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Abstract

Typically, pre-trained word embeddings are trained with cooccurrence statistics
from symmetric context windows around a focal word. Furthermore, it is standard
practice to keep only a single representation for each word after training even though
separate context vectors are trained. In this work, we show how the use of two vector
representations per word allows for the modelling of asymmetric relationships between
words, such as ordering and dependency. We also investigate the necessity of training
two vector representations of words during the training process.

1 Introduction

Recently, Newell et al. (2019) discovered shared features among some of the most widespread
pre-trained word embedding algorithms, including word2vec (Mikolov et al., 2013b), GloVe
(Pennington et al., 2014), Swivel (Arora et al., 2015), FastText (Joulin et al., 2016), and
the “latent discourse space” model (LDS) Shazeer et al. (2016). One of the commonalities
that the authors find is bilinear parametrization of PMI. The latter can be calculated from
corpus statistics, while the former comes from inner products between learned word rep-
resentations. Two word representations are used: context vectors (“covectors”) and word
vectors. Covectors are typically discarded after training is complete or they are averaged
with the word vectors. In downstream applications of word embeddings, the inner prod-
uct between covector and vector is seldom exploited, in spite of the fact that it measures
meaningful information about word cooccurrence by approximating PMI. The authors then
derive their own embedder (Hilbert-MLE) based solely on the shared principles in the above
mentioned algorithms. It achieves competitive performance with SGNS (Skip-gram with
Negative Sampling, a form of word2vec) and GloVe in similarity, analogy and downstream
tasks.

In this work, we further investigate the properties of pre-trained word embeddings by mak-
ing use of Hilbert-MLE. We first introduce modifications to the extraction of cooccurrence
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statistics which are fed into Hilbert-MLE by experimenting with different definitions of cooc-
currence. These include asymmetric notions of context such as context windows on only one
side of the focal word, as well as dependency-based contexts. We quantitatively and quali-
tatively measure the changes in the resulting embeddings from the case when a symmetric
window-based notion of context is used. While we observe small changes in similarity, anal-
ogy, and downstream performance, perhaps the most informative result is the change in how
covectors and vectors interact. Their inner product is meant to emphasize cooccurrence, and
thus changes when the notion of cooccurrence changes. For instance, in the dependency-
based case, we observe higher covector-vector inner products for words that appear more
frequently (compared to under independence) as dependent-head pairs. Furthermore, the
inner product captures the asymmetry inherent to the new contexts. In the dependency-
based case, if the roles of head and dependent are switched in a word pair, their inner product
also changes.

Secondly, we introduce modifications to the covector-vector inner product itself in an investi-
gation of the necessity of using covectors when training word embeddings. We train a variant
of Hilbert-MLE where covectors are excluded from the training process altogether and only
vector-vector inner products are taken. We also experiment with replacing covectors by a
linear map acting on vectors. The former variant is unable to achieve the same quantitative
performance as with covectors, while the latter can do so only when the dimension of the
embedding space is increased.

2 Related Work

2.1 Pre-Trained Word Embeddings

Pre-trained word embeddings, also known as distributed (or continuous) word representa-
tions allow for words in a corpus to be represented in a meaningful way that is emblematic
of the syntactic and semantic similarities between words in a language.

To illustrate this, say we have a large corpus of text. We extract a set of the n most
frequently occurring words in this corpus and call this our vocabulary V . How can we
represent these words in such a way that we can feed them into a neural network (or any
other architecture taking feature vectors as input)? One choice to represent the words in our
vocabulary would be to label each one with a unique one-hot feature vector in Rn. However,
this maps the vocabulary words to sparse vectors in a high-dimensional space. Furthermore,
it does not capture any information about the meaning of the words. To resolve this, we
define an embedder V : Rn → Rd, where d << n, which maps the one-hot representations
to dense representations in a low-dimensional space. Now, the set of word vectors is no
longer orthogonal, so we can now consider nontrivial angles between elements of the set. A
pair of word vectors with high cosine similarity can mean that the two words have a similar
meaning. But what does it mean for two words to be similar? And how can this similarity
be learned?
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There is now a variety of architectures for producing pre-trained distributed/continuous
representations of words (a.k.a. word embeddings). These include word2vec (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), Swivel (Arora et al., 2015), FastText (Joulin et al.,
2016), and the “latent discourse space” model (LDS) (Shazeer et al., 2016). All of these rely
on the distributional hypothesis (Harris, 1954), which states that words that occur in similar
contexts have similar meanings. They use word cooccurrence counts in fixed-size context
windows as a way of quantifying this.

Consider the most popular form of word2vec, Skip-gram with Negative Sampling (SGNS)
(Mikolov et al., 2013b), as an example. It relies on the notion of a context window (typ-
ically of size 5) that weighs the words on the left and right of a given focal word. Con-
cretely, if we have a focal word w0, we consider c “context” words to its left and to its right
{w−c, w−c+1, ..., w−1, w1, ..., wc}. Put one way, the objective of SGNS is to be able to predict
the context words in the window given the focal word. This is done by training the skip-gram
model to map words to a vector space where the word vector for the focal word has a high
inner product with “context vectors” that represent each of the words in the window around
the focal word.

Given a sequence of training words of length T from a corpus and a context window size of
c, the Skip-gram objective is to maximize the following:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j | wt) (1)

They parametrize the probability of a context word wt+j given a focal word wt as:

p(wt+j | wt) =
exp(v

′T
wt+j

vwt)∑n
w=1 exp(v′T

w vwt)
, (2)

where vw and v′w are the “input” and “output” representations of word w, respectively. It
should be noted that because of this, two distinct vector representations are used for each
word. The input representation represents a focal word, while the output representation
represents context words. In applications, only one of the two representations is kept (or the
two representations are averaged, as is the case for GloVe).

However, there is value in each of the two representations which are produced. In Equation
(2), the inner product v

′T
wt+j

vwt between the input representation of the focal word and the
output representation of the context word measures how likely wt+j is to occur in the context
of wt (more precisely, as we will see later, how likely it is to observe wt+j in the context of
wt relative how likely it would be to see them together if they were independent). This
is different from the inner product between two input (word) vectors (vTi vj) or two output
(context) vectors (v

′T
i v
′
j), which has been empirically shown to represent how “similar” (as

dictated by the distributional hypothesis) words i and j are to each other. If words i and
j occur in the same contexts, then their word vectors are trained to be highly selective for
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the same context vectors. The word vectors of i and j will then have high cosine similarity
(compared to other word pairs where words are not as selective for the same contexts).

Another important observation from Equation (2) is that it is a softmax over the entire
vocabulary. For larger vocabulary sizes, this becomes intractable. To counter this, Mikolov
et al. (2013b) introduce “negative sampling” as a more efficient way of imposing the unitarity
consraint of probability. First, a “positive sample” is drawn from the data distribution. In
our case, we draw a word pair based on cooccurrence counts (how often two words appear
and are less than c words apart). Then, k “negative samples” are selected from a noise
distribution (in this case, we draw a single word from a variant of the unigram distribution
and then consider the inner product of its context/output representation with the focal
word). They replace Equation (2) with the following:

log p(wt+j | wt) = log σ(v
′T
wt+j

vwt) +
k∑
i=1

E
wi∼Pn(w)

[
log σ(−v′T

wi
vwt)

]
, (3)

where the second term on the right hand side corresponds to the negative sampling term.

With negative sampling, the goal of maximizing the quantity in Equation (1) can now be
interpreted as maximizing the log probability that the observed word-context pairs in the
sequence do indeed come from the data distribution and that the negative samples do not
come from the data distribution (Goldberg and Levy, 2014).

Interestingly, Mikolov et al. (2013b) also find it necessary to undersample frequent words in
a corpus. Such words (like “the”) are typically less informative and thus should not bear
a stiff penalty for lack of fit that is proportional to the number of times they appear in
the corpus. With this in mind, they modify negative sampling to draw from the unigram
distribution raised to the 3/4rd power. They also discard words in the training set with a
probability that increases as unigram frequency increases (see their paper for more details).

2.2 Hilbert-MLE

In a discussion of the properties of pre-trained word embeddings. Newell et al. (2019) show
that the success of SGNS, GloVe, Swivel, FastText, and LDS can be attributed to two
characteristics that they all share. At their core, these algorithms consist of a multinomial
model of word cooccurrence and bilinear parametrization of PMI for word pairs. The authors
show empirically that these are sufficient for a model to replicate the performance of SGNS
and GloVe in similarity, analogy, and downstream tasks. They do this by deriving a canonical
embedder, which they call Hilbert-MLE, based solely on the two principles outlined above.
It does away with any superfluous design elements present in other models.

The authors first expand on the proof from Levy and Goldberg (2014b) that SGNS is im-
plicitly a matrix factorization algorithm. It factorizes a n × n matrix M , where Mij =
PMI(i, j)− ln k, as the product of two n×n matrices W and V . These can be thought of as
matrices of context vectors and word vectors, respectively. Here, PMI(i, j) is understood to
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measure the deviation of the number of cooccurrences of words i and j from how often the
two words would occur together under independence. It is defined by the following equation:

PMI(i, j) = ln
pij
pipj

, (4)

where pij is the probability of words i and j cooccurring (with i as a context word of the
focal word j), and pi and pj are the unigram probabilities of words i and j (i.e. how likely
each word is to occur).

Similarly, they show that GloVe, FastText, and LDS also factorize matrices with entries cor-
responding to a variant of PMI. This result means that all of these algorithms are essentially
learning a bilinear parametrization of PMI via context vectors (which the authors refer to
as “covectors”) and word vectors. This makes the importance of distinguishing between a
word as a context word and a word as a focal word clear.

It will now be useful to introduce some notation. We will use the convention proposed by
Newell et al. (2019) when discussing covectors and vectors. They denote the covector for the
word i as 〈i|, the vector for the word j as |j〉, and their inner product as 〈i|j〉. 〈i| can be
viewed as a linear functional from the embedding space Rd (commonly d = 300) to R. In
specific terms, 〈i| maps |j〉 to 〈i|j〉, which approximates a variant of PMI(i, j). In the case of
SGNS, we have that ψ(i, j) = 〈i|j〉 is a bilinear parametrization of φ(i, j) = PMI(i, j)− ln k.
Once again, we understand that 〈i|j〉 is meant to designate cooccurrence of words i and j,
while |i〉 · |j〉 is meant to designate the semantic/substitional similarity of words i and j (how
well the words can replace each other).

With only the two aforementioned principles at their disposal, the authors proceed to derive
their own embedder, Hilbert-MLE. They build a multinomial model of corpus cooccurrence
statistics D given the sets of vectors and covectors:

P (D|V,W ) = N !
∏
ij

p̂
Nij
ij

Nij!
, (5)

where Nij is the number of times words i and j cooccur (with i as the context word and j

as the focal word), N =
∑

ij Nij, and p̂ij is the model’s estimate of pij =
Nij
N

. For all word

pairs (i, j), they explicitly parametrize ˆPMI(i, j) bilinearly as the inner product of a covector
and a vector. Consequently, we have ψij = 〈i|j〉 and φij = PMI(i, j) for Hilbert-MLE. From
that, the model estimate p̂ij can be computed:

〈i|j〉 = ˆPMI(i, j) = ln
p̂ij
pipj

(6)

⇒ p̂ij = pipje
〈i|j〉 (7)

We can also introduce bias terms which aid in modelling PMI. As discussed in Newell et al.
(2019), the distribution of PMI across all word pairs in our corpus is approximately normal
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with a mean near zero (in fact, the mean is slightly below zero). We can deploy the inner
product 〈i|j〉 to model this distribution as if it was centred at zero, with the bias terms b〈i|
and b|j〉 providing the necessary shift towards the true mean. Note that there are two bias
terms for each word: one “covector” bias and one “vector bias”. In our experiments, we
consistently observe modest gains when using bias. Hence, we employ the following “inner
product”:

ψij = 〈i · j〉 = 〈i|j〉+ b〈i| + b|j〉 (8)

Taking the negative log likelihood loss and employing a Lagrange multiplier to satisfy∑
ij p̂ij = 1 (see paper for details), they arrive at the following loss function:

L =
∑
ij

(
pij〈i · j〉 − pipje〈i·j〉

)
(9)

Taking the partial derivative with respect to 〈i · j〉, they obtain:

∂L
∂〈i · j〉

= pipj

[
ePMI(i,j) − e〈i·j〉

]
(10)

Note that when this gradient is zero, we have 〈i · j〉 = PMI(i, j).

However, with this particular gradient, Hilbert-MLE suffers from the same problem as
word2vec where frequent words are penalized harshly for lack of fit. This comes from the pipj
term, which causes a significant imbalance between the contribution of frequent words and
that of rare words to the gradient. To resolve this, they add a temperature hyperparameter
τ to the gradient:

∂L
∂〈i · j〉

= (pipj)
1
τ

[
ePMI(i,j) − e〈i·j〉

]
(11)

With this approach, increased unigram frequency of words still results in increased contri-
bution to the gradient, but this scales like the τth root function rather than linearly.

One issue with this “dense” version of Hilbert-MLE is that it requires a sum over all word
pairs, which is O(n2). Furthermore, statistics for each word pair must be held in memory.
This poses a problem for applications which require large vocabulary sizes in the hundreds of
thousands of words. Thus, it is more practical to use a sample-based version of Hilbert-MLE.

The authors derive the sample-based form by considering Equation (9) as a difference of
expectations:

L = E
(i,j)∼pij

〈i · j〉 − E
i∼pi,j∼pj

e〈i·j〉 (12)
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This is very similar to negative sampling in SGNS. The positive term is an expectation over
the data distribution, while the negative term is an expectation over a noise/unigram distri-
bution. Unfortunately, this formulation has very high variance due to the exponential in the
negative sampling term. The authors find the equivalent “balanced sampling” formulation to
be far more effective (note that we can still apply the temperature from the dense version):

L = E
i∼p

1
τ
i ,j∼p

1
τ
j

[
ePMI(i,j)〈i · j〉 − e〈i·j〉

]
(13)

The authors find that both the dense and sample-based Hilbert-MLE perform on par with
SGNS and GloVe on an array of similarity, analogy, and downstream tasks. We employ these
same tasks in the evaluation of our embeddings.

2.3 Dependency Parsing

Grammar is what gives language structure by setting rules for how words are allowed to
compose and form sentences. The dependency grammar focuses on the notion of a directed
dependency relation between a pair of words (Jurafsky and Martin, 2019). For example,
in the sentence “Sarah ate a red apple”, there is a dependency relation between “red” and
“apple”, since the role of the adjective “red” in the sentence is to modify the noun “apple”.
Following the Stanford basic typed dependencies standard for annotation (de Marneffe and
Manning, 2008), we call the type of relation between these two words amod, which stands
for “adjectival modifier”. We call “red” the modifier or dependent and “apple” the head.
By convention, every dependency relation is designated by an arc from head to dependent.
The collection of all words and arcs in a sentence forms a rooted dependency parse tree. For
our example sentence, the parse would be:

Notice how the tree is rooted and has a special “ROOT” token which has an outgoing arc to
one word of the sentence (“ate”). Typically, the word pointed to by the root is the verb in
a verb phrase. Thus, we say that the head of “ate” is the root and the dependency relation
involved is of type “root”. In addition, each word in the tree has a single head. However,
a head can have multiple dependents (as is the case for “ate”). Common dependency rela-
tions from the Stanford basic dependencies (aside from the ones already mentioned) include
“noun subject” (nsubj ), “direct object” (dobj ), “conjunct” (conj ), “determiner” (det), and
“preposition” (prep).

In recent years, Universal Dependencies (Nivre et al., 2016) has attempted to unite as many
languages as possible under the same dependency grammar framework. Its authors define
an annotation scheme which is very similar to the Stanford dependencies scheme and that
consists of 40 dependency relations (though not all languages use every single relation).

2.4 Dependency-based Word Embeddings

Levy and Goldberg (2014a) discuss how context window-based embeddings from SGNS do
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not always capture the most relevant context of a focal word. The use of a fixed-size con-
text window can dilute the most relevant context words with irrelevant information. As
an example, they consider the sentence “Australian scientist discovers star with telescope”.
They note that while “scientist” and “star” are important contexts for “discovers” (being
the subject and object of the latter verb), “Australian” is not. Furthermore, small context
windows risk missing important contextual information, particularly in the case of depen-
dency relations between words that are far apart from each other. To deal with these two
problems, Levy and Goldberg use the dependents and modifiers (along with associated de-
pendency labels) as contexts for each word. They learn context embeddings for all (context
word, dependency label) tuples.

Interestingly, Levy and Goldberg find that the dependency-based word vectors exhibit more
“functional similarity” (similarity) than window-based SGNS word vectors that exhibit
“topical similarity” (relatedness). For instance, the dependency-based representation for
“Florida” has the highest cosine similarity with other US states like Texas and Louisiana,
while its window-based representation has the highest cosine similarity with cities in Florida,
like Tampa and Jacksonville. As Levy and Goldberg put it, dependency-based embeddings
find words that behave like the word in question, while window-based embeddings find words
that associate with it. This pattern is confirmed by quantitative tests such as the Word-
Sim353 dataset, which tests a model’s ranking of similar pairs of words over related pairs of
words, and vice versa.

3 Positionally Asymmetric Embeddings

Recall the notion of ψij and φij discussed in Section 2.2. ψij is a function of the model
parameters of a word embedder which bilinearly parametrizes φij, some variant of PMI(i, j).
This notion provides the Hilbert embedder with quite a bit of flexibility, as we can view the
partial derivative from Equation (11) as:

∂L
∂ψij

= pipj

[
eφij − eψij

]
, (14)

where ψij = 〈i · j〉 and φij = PMI(i, j).

As in Section 2.2, note that when this partial derivative is zero, we have ψij = φij.

This gives us the power to redefine the bilinear parametrization (by altering ψij and φij)
without affecting the formulation of the loss.

Consider the definition of φij = PMI(i, j) from Hilbert-MLE:

PMI(i, j) = ln
pij
pipj

= ln
Nij
N

pipj
(15)
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Nij is defined via cooccurrence counts from a training corpus. The most common definition
of cooccurrence consists of fixing a focal word i and weighing the five words to its left
and the five words to its right in a “context window”. The most common distribution
of weights is “dynamic window weighting”, which attaches linearly decreasing weights of
[1, 0.8, 0.6, 0.4, 0.2] to cooccurrences with context words on each side of the focal word. More
precisely, for a context word i that is m words to the left (or right) of a focal word j, a weight
of wij = 1− 1

5
(m− 1) is added to Nij. Context words which are closer to the focal word get

higher cooccurrence weights than context words which are farther from the focal word.

The above definition of Nij is the basis for the embeddings that were trained in the original
Hilbert-MLE paper. We name these “symmetric window-based embeddings”. From it, we
can derive the following property:

Property 1. In the case of symmetric window-based embeddings, we have Nij = Nji for all
(i, j) ∈ {1, ..., n} × {1, ..., n}.

Proof. Let (i, j) ∈ {1, ..., n} × {1, ..., n}. Consider the kth cooccurrence of i and j in the
corpus (by this we mean that i is the context word, and j is the focal word). If j is m words

to the left of i, where 1 ≤ m ≤ 5, the weight of this cooccurrence is then w
(k)
ij = 1− 1

5
(m−1).

But then i is m words to the right of j. Hence we have a cooccurrence of j and i with weight
w

(k)
ji = 1− 1

5
(m− 1) = w

(k)
ij . A similar argument can be made if j is to the right of i.

Note that we can interchange the roles of i and j in the above, and so we have that i and
j cooccur if and only if j and i cooccur. Combining this with the fact that w

(k)
ij = w

(k)
ji for

every cooccurrence k, we have that Nij = Nji.

It immediately follows from this result that PMI(i, j) = PMI(j, i) (and φij = φji). Hence,
when the partial derivative in Equation (14) is equal to zero, we have that 〈i·j〉 = PMI(i, j) =
PMI(j, i) = 〈j · i〉. Due to the left-right symmetry in the context window that dictates Nij,
we observe a symmetry in covector-vector inner products.

We now observe that altering how Nij is defined would alter PMI(i, j) and φij. Doing this
while maintaining ψij = 〈i · j〉 allows us to use covectors and vectors to model different
notions of cooccurrence. In particular, we can consider cases where Nij = Nji does not hold.

To construct such a case, it is sufficient to construct a context window where there is no
longer an equivalence between word i cooccurring with word j and word j cooccurring with
word i. We take a “positionally asymmetric window” with context words only on one side
of the focal word (either on the left or on the right). For a focal word w0, we take either
{w1, ..., w5} (right) or {w−5, ..., w−1} (left) as its context window.

The use of a positionally asymmetric window as context allows us to explicitly take word
ordering into account. For example, the words “red” and “apple” cooccur frequently, and
in the majority of cases “red” will be to the left of “apple”. Training embeddings with this
notion of context will give us the ability to quantify the higher likelihood of “red” being to
the left of “apple” than to the right.
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To show that Nij = Nji does not hold in this case, we provide a counterexample. Consider
a toy corpus which contains only the sentence “The quick brown fox jumped over the lazy
dog.” When we view “jumped” is a focal word and we restrict ourselves to right contexts
only, we have the cooccurrences (“jumped”, “over”), (“jumped”, “the”), (“jumped”, “lazy”),
and (“jumped”, “dog”), with weights 1, 0.8, 0.6, and 0.4, respectively. However, when we
view “over” as a focal word, there is no cooccurrence (“over”, “jumped”) with weight 1, since
the only context words for “over” with a right window are the three words to its right. (Note
that if we were using a symmetric context window, such a cooccurrence would exist.) And
so, taking word i to be “jumped” and word j to be “over”, we have Nji = 1, but Nij = 0.

The above implies that 〈i · j〉 and 〈j · i〉 are no longer necessarily approximately equal.
This gives us the power to model both sides of the positional asymmetry with covectors
and vectors. If we take right context windows, then PMI(i, j) measures the deviation from
independence of the likelihood of word i being to the right of word j. PMI(j, i) measures
the deviation from independence of the likelihood of word j being to the right of word i,
which is the same as that of word i being to the left of word j. These quantities will be
approximated by 〈i · j〉 and 〈j · i〉 respectively during training. A similar observation can be
made about training with left context windows. Since training with either one of the context
windows allows for this modelling of both sides of the asymmetry, it is redundant to train a
set of embeddings with left contexts and a set of embeddings with right contexts.

We present both qualitative and quantitative results from our training of positionally asym-
metric embeddings in Section 6.

4 Dependency-based Embeddings

Here, we expand on the work of Levy and Goldberg (2014a), by bringing our new perspective
of explicit bilinear parametrization of PMI to the use of syntactic contexts for pre-trained
word embeddings. In our experiments, we adopt a slightly different approach from the one
taken by Levy and Goldberg. For our dependency-based contexts, we simply take the head
(as defined by a dependency parse) of each focal word as its one and only context word.
Thus, during collection of cooccurrence statistics, we add 1 to Nij every time we observe the
dependent-head pair (i, j) in the corpus. Consider the same toy example as in the previous
section: “The quick brown fox jumped over the lazy dog.” (SHOW the parse of the sentence
by CoreNLP). Here, we have Nij = 1 for (i, j) =(“fox”, “jumped”). As in the previous
section, note the asymmetry in that Nji = 0, since dependency relations have directionality
attached to them.

Once again, viewing this from the perspective of PMI, we now have that PMI(i, j) mea-
sures the deviation from independence of the probability that word j is the head of word
i. PMI(j, i) measures the deviation from independence of the probability that word i is the
head of word j, which is equivalent to word j being the dependent of word i. These are
approximated by 〈i · j〉 and 〈j · i〉 respectively. With this framework, we have the ability to
model both sides of the head-dependent asymmetry, as well as a quantifier for the plausibility
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of a dependency relation (with direction) between two words. The latter could prove useful
for a task like selectional preference, which we discuss further in Section 8.2.

Our approach differs from Levy and Goldberg in how we exploit the fact that we have
two representations per word. Covectors represent words as dependents searching for their
heads and vectors represent words as heads searching for their dependents. In the Levy and
Goldberg case, both covectors and vectors can represent either heads or dependents (since
both the head and dependents of every focal word are taken as context words).

In addition, we do not employ typed dependencies. We obtain a single covector and vector
for each word, rather than multiple covectors for each word (one for each type of dependency
relation that it appears in). We can directly query our metric of cooccurrence between two
words 〈i · j〉, irrespective of a dependency relation type. We plan on exploring the explicit
integration of dependency relation types into the Hilbert inner product in future work (see
Section 8.1).

We present both qualitative and quantitative results from our training of dependency-based
embeddings in Section 6.

5 Vector-only Embeddings

In this section, we introduce two types of embeddings to investigate the necessity of training
covectors. The latter give us the ability to model both symmetric and asymmetric notions
of cooccurrence between words via their inner products with vectors. In spite of this, they
are often discarded after training (the default for SGNS), or the average between covectors
and vectors is taken (the default for GloVe). We attempt to reconcile this practice with how
word representations are trained by investigating the performance of embeddings trained
without the two distinct representations of vectors and covectors. Returning to the sym-
metric window-based definition of φij in the Hilbert-MLE paper, we investigate the effect of
manipulating ψij.

Our first set of modified Hilbert embeddings eliminates covectors from the training process
entirely, replacing ψij = 〈i · j〉 with ψij = |i〉 · |j〉+ b|i〉+ b|j〉. Now, the inner product between
two vectors has the dual responsibility that it previously split with the covector-vector inner
product. It has the objective |i〉 · |j〉 = PMI(i, j) and is still meant to measure the similarity
between words i and j. These goals are not fully compatible since (though there can be some
overlap) words that appear together frequently do not necessarily have similar meanings. For
example, “young” and “woman” cooccur very often (39,477 times in the corpus we used),
but clearly do not have similar meanings.

Our second set of modified Hilbert embeddings also does not train covectors, but instead
trains a linear map R : Rd → Rd, which maps vectors to representations that are meant to
behave like covectors. We set ψij = (|i〉R)T ·j〉 := (|i〉R)T |j〉+b|i〉+b|j〉. With this, we regain
two separate representations for each word i: |i〉 and (|i〉R)T , but the second representation
is not trained for each individual word.
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6 Experiments

6.1 Implementation

The corpus used for window-based embeddings (both symmetric and positionally asymmet-
ric) is the same as in the Hilbert paper: a combination of Gigaword 3 (Graff et al., 2007)
and a lower-cased Wikipedia 2018 dump. For dependency-based embeddings, we use the
dependency parse obtained by running Stanford CoreNLP on the Gigaword 3 corpus. (We
initially attempted to train on the English Web Treebank (Bies et al., 2012), annotated in
Universal Dependencies format by human annotators (Nivre et al., 2016). Unfortunately, it
proved to be too small for our embeddings to learn meaningful relations, containing only
254,830 tokens.) For a fair comparison, we also train a second set of symmetric window-
based embeddings on the Gigaword 3 corpus only. We collect unigram and cooccurrence
statistics for each corpus and for each of the three definitions of cooccurrence (symmetric
window-based, positionally asymmetric window-based, and dependency-based). In all cases,
the vocabulary size is n = 50,000.

All embeddings are trained with the sample-based version of Hilbert-MLE with balanced
sampling. The dimension of the embedding space is d = 300, except for vector-only embed-
dings, where experiments were done with d = 300 and d = 600. The number of updates is
fixed at 30,000 and the batch size used is 450,000 (except in the case of d = 600, where it
is decreased to 400,000 to fit onto the GPU). The temperature hyperparameter is set to 2.
For all embeddings with ψij = 〈i · j〉, learning rate is between 2e-3 and 3e-3. For vector-only
embeddings, learning rate is between 8e-3 and 9e-3. Bias terms (“covector bias” and “vector
bias”) for each word in the vocabulary are trained and are added to each inner product.
In the case of dependency-based embeddings, this means that each word has a bias corre-
sponding to it being a dependent and a bias corresponding to it being a head. This bias is
independent of the word’s surrounding context.

We run Hilbert-MLE with 1 GPU, 2 CPUs and 32GB of RAM. Reaching 30,000 updates takes
approximately 8 hours. We quantitatively evaluate our embeddings on the same intrinsic
and extrinsic tasks as in the Hilbert-MLE paper.

6.2 Quantitative Evaluation

In the similarity tasks, we consider the ranking of word pairs given by the cosine similarity
between word vectors and measure its correlation with the rankings by human annotators.
Spearman’s rank correlation coefficient is the metric used for all similarity tasks. These tasks
are: Baker Verbs 143 (B143) (Baker et al., 2014), the MEN development set (MENd) and
test set (MENt) (Bruni et al., 2012), Radinsky Mechanical Turk (RMT) (Radinsky et al.,
2011), Rare Words (RARE) (Luong et al., 2013), the SemEval 2017 Task (SE17) (Camacho-
Collados et al., 2017), Simlex999 (S999) (Hill et al., 2015), Wordsim353 (Finkelstein et al.,
2001) divided into similarity (WS-S) and relatedness (WS-R) (Agirre et al., 2009), and Yang
Powers Verbs 130 (Y130) (Yang and Powers, 2006).
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In the analogy tasks, the goal is to resolve analogies like “Paris is to France as Berlin
is to X” using operations on word vectors. We evaluate on the Google Analogy dataset
(Google) (Mikolov et al., 2013a) and the Bigger Analogy Test Set (BATS) (Gladkova et al.,
2016). We use the 3CosMul selection rule, which was found to perform best in the Hilbert-
MLE paper.

There are two types of downstream tasks: text clasification and sequence labelling. For text
classifcation, the IMDB movie reviews dataset for sentiment analysis (Maas et al., 2011)
and the AGNews news classification dataset, preprocessed by Kenyon-Dean et al. (2018)
are used. We use the same BiLSTM-max sequence encoder model (Conneau et al., 2017)
as the one used in the Hilbert paper. For sequence labelling, we use our embeddings for
supersense tagging (Ciaramita and Altun, 2006) on the Semcor 3.0 corpus (Miller et al.,
1993), as well as part-of-speech (POS) tagging on the Penn Treebank Wall Street Journal
Corpus (Marcus et al., 1993) and the Brown corpus (distributed by NLTK). We use the same
biLSTM sequence labelling model from Huang et al. (2015) employed in the Hilbert-MLE
paper.

RARE S999 MENt WS-R SE17 RMT B143 WS-S Y130 MENd Avg
SC 0.518 0.392 0.714 0.530 0.635 0.657 0.353 0.718 0.443 0.701 0.566
RC 0.514 0.391 0.687 0.569 0.623 0.623 0.284 0.697 0.468 0.681 0.554
LC 0.542 0.401 0.697 0.499 0.654 0.628 0.303 0.697 0.327 0.679 0.542

Table 1: Table summarizing the similarity task performance for embeddings with different
choices of φij. Performance is measured with Spearman’s rank correlation coefficient, signi-
fying correlation with human annotator scores. “SC” designates “symmetric window-based
with covectors”, “LC” designates “left window-based with covectors”, and “RC” designates
“right window-based with covectors”. The last column is the average over all similarity task
performances for each embedding.

RARE S999 MENt WS-R SE17 RMT B143 WS-S Y130 MENd Avg
SCG 0.170 0.224 0.453 0.497 0.443 0.508 0.307 0.577 0.272 0.419 0.387
DCG 0.493 0.402 0.689 0.520 0.617 0.623 0.302 0.694 0.348 0.653 0.534

Table 2: Table summarizing the similarity task performance for embeddings trained on Gi-
gaword 3 only (symmetric window-based and dependency-based). Performance is measured
with Spearman’s rank correlation coefficient, signifying correlation with human annotator
scores. “SCG” designates “symmetric window-based with covectors trained on Gigaword
3”, “DCG” designates “dependency-based with covectors trained on Gigaword 3”. The last
column is the average over all similarity task performances for each embedding.

6.3 Qualitative Evaluation

To better understand the behaviour of covectors and vectors under changes of ψij and φij,
we construct a qualitative analysis of our embeddings, which we call “selection tables”.
This is similar to the qualitative analysis of dependency-based embeddings by Levy and
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RARE S999 MENt WS-R SE17 RMT B143 WS-S Y130 MENd Avg
SC 0.518 0.392 0.714 0.530 0.635 0.657 0.353 0.718 0.443 0.701 0.566
SR 0.529 0.391 0.696 0.587 0.637 0.676 0.337 0.728 0.448 0.689 0.571
SV 0.462 0.351 0.749 0.597 0.606 0.659 0.234 0.709 0.468 0.732 0.557

Table 3: Table summarizing the similarity task performance for embeddings with different
choices of ψij. Performance is measured with Spearman’s rank correlation coefficient, signi-
fying correlation with human annotator scores. “SC” designates “symmetric window-based
with covectors”, “SR” designates “symmetric window-based with R (600-dimensional)”, and
“SV” designates “symmetric window-based vector-only (without R, 600-dimensional)”. The
last column is the average over all similarity task performances for each embedding.

Google BATS
SC 0.563 0.283
RC 0.515 0.224
LC 0.513 0.251

Table 4: Accuracy scores for embeddings with different choices of φij on Google Analogies
and the Bigger Analogy Test Set.

Google BATS
SCG 0.359 0.199
DCG 0.348 0.130

Table 5: Accuracy scores for embeddings trained on Gigaword 3 only on Google Analogies
and the Bigger Analogy Test Set.

Google BATS
SC 0.563 0.283
SR 0.539 0.265
SV 0.602 0.213

Table 6: Accuracy scores for embeddings with different choices of ψij on Google Analogies
and the Bigger Analogy Test Set.
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Goldberg (2014). In that analysis, they fix a word vector and list the five word vectors
that have the highest cosine similarity with it, as well as the five covectors that have the
highest inner product with it. We perform the same analysis and, since we have embeddings
capable of modelling two sides of an asymmetric relation, we also generate tables where a
word’s covector is fixed and we list the vectors that have the highest inner product with
it. For embeddings where Nij = Nji does not hold, we expect to observe that the tables
for fixed vector and fixed covector to be different. For instance, in the case of dependency-
based embeddings, fixing a word vector |j〉 is akin to fixing a head that is looking for its
dependents. The list for that fixed vector should be a list of five words which have the
highest PMI with the word represented by |j〉 when the latter is viewed as a head and they
are viewed as dependents. To facilitate interpretability, we only rank the top 2000 words in
the vocabulary when generating selection tables.

j argmaxi〈i · j〉 argmaxi〈j · i〉 argmaxi cos(|i〉, |j〉)

company
insurance, profit,
owned, holding,

largest

owned, insurance,
bought, oil, inc.

companies, firm,
industry, businesses,

business

president
vice, w., george, bush,

clinton
vice, w., clinton,

bush, george

vice, presidential,
chairman,

administration, met

florida
supreme, state,

university, governor,
texas

beach, supreme,
georgia, southern,

carolina

carolina, texas,
virginia, jersey, ohio

small
businesses, town,

arms, amount, village
businesses, arms,

town, amount, large
large, smaller, larger,

huge, largest

arrived
here, afternoon,

shortly, saturday,
sunday

here, troops, morning,
ship, refugees

returned, met, sent,
headed, visit

Table 7: Selection table for symmetric window-based embeddings trained on Gigaword and
Wikipedia.

7 Discussion

As shown in Table 1, the positionally asymmetric embeddings are competitive with the
symmetric window-based embeddings. On top of the benefit of being able to query word
ordering, there is little decrease in intrinsic performance with this asymmetric context. This
is likely because the positionally asymmetric embeddings still rely on the notion of a fixed
size context window with dynamic weighting. Even though left context windows may not
capture a context word j to the right of a focal word i (which a symmetric window would
catch), they will still capture i as a context word for j (which the symmetric window also
catches), since i is to the left of j. In a sense, the positionally asymmetric windows capture
the same information, but do not “double count” coocurrence statistics, and thus the PMI
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j argmaxi〈i · j〉 argmaxi〈j · i〉 argmaxi cos(|i〉, |j〉)

company
founded, owned,
earnings, bought,

shares

insurance, holding,
telephone,

entertainment, phone

companies, firm,
corp., co., businesses

president
w., clinton, bush,
george, saddam

vice, elected, former,
iraqi, appointed

vice, leaders, leader,
candidate,
presidential

florida
supreme, state,

attorney, governor,
coast

beach, beat, fort,
south, university

carolina, texas, ohio,
jersey, georgia

small
businesses, amount,
arms, village, town

very, large, too, quite,
contains

large, smaller, larger,
largest, huge

arrived
here, scene,

afternoon, morning,
evening

ships, troops, ship,
arafat, refugees

return, occurred,
leave, visit, trip

Table 8: Selection table for positionally asymmetric embeddings with right context windows.

j argmaxi〈i · j〉 argmaxi〈j · i〉 argmaxi cos(|i〉, |j〉)

company
insurance, holding,
telephone, software,

oil

earnings, owned,
bought, profit,

founded

companies, firm, co.,
businesses, business

president
vice, elected, former,

senior, iraqi
w., clinton, bush,

george, bill

vice, prime,
government,

chairman, minister

florida
beach, south, texas,

fort, university

supreme, state,
georgia, attorney,

coast

texas, carolina,
georgia, virginia, ohio

small
very, too, contains,

large, quite
town, amount,

village, arms, size
large, few, smaller,

larger, huge

arrived
ship, refugees,

soldiers, plane, troops

here, afternoon,
scene, baghdad,

moscow

met, sent, entered,
returned, took

Table 9: Selection table for positionally asymmetric embeddings with left context windows.
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j argmaxi〈i · j〉 argmaxi〈j · i〉 argmaxi cos(|i〉, |j〉)

company
insurance, holding,
telephone, software,

oil

earnings, owned,
bought, profit,

founded

companies, firm, co.,
businesses, business

president
vice, elected, former,

senior, iraqi
w., clinton, bush,

george, bill

vice, prime,
government,

chairman, minister

florida
beach, south, texas,

fort, university

supreme, state,
georgia, attorney,

coast

texas, carolina,
georgia, virginia, ohio

small
very, too, contains,

large, quite
town, amount,

village, arms, size
large, few, smaller,

larger, huge

arrived
ship, refugees,

soldiers, plane, troops

here, afternoon,
scene, baghdad,

moscow

met, sent, entered,
returned, took

Table 10: Selection table for positionally asymmetric embeddings with left context windows.

j argmaxi(|i〉R)T · j〉 argmaxi(|j〉R)T · i〉 argmaxi cos(|i〉, |j〉)

company
insurance, owned,

largest, inc., founded

insurance, owned,
holding, earnings,

software

companies, firm, co.,
industry, businesses

president
vice, w., clinton,

george, bush
vice, w., clinton,

george, bush

florida
supreme, georgia,
beach, voters, bay

beach, supreme,
texas, georgia, fort

carolina, texas,
california, georgia,

virginia

small
businesses, amount,
fish, farm, numbers

businesses, amount,
numbers, town, farm

large, smaller, larger,
huge, nearby

arrived
here, shortly,

afternoon, ship,
troops

shortly, here, paris,
afternoon, refugees

met, returned, visit,
sent, reporters

Table 11: Selection table for vector-only embeddings with R.

17



j argmaxi|i〉 · |j〉+ b|i〉 + b|j〉 argmaxi cos(|i〉, |j〉)

company firm, co., companies, corp, inc.
companies, firm, co., owned,

industry
president vice, w., met, leader, former vice, w., met, clinton, bush

florida
carolina, beach, texas, virginia,

state
carolina, texas, beach, georgia,

virginia

small
large, smaller, fish, businesses,

larger
large, smaller, larger, businesses,

fish

arrived
met, ambassador, visit, sent,

saturday
met, visit, returned, monday,

saturday

Table 12: Selection table for vector-only embeddings (without R).

j argmaxi〈i · j〉 argmaxi〈j · i〉 argmaxi cos(|i〉, |j〉)

company
executives, insurance,

software, bought,
largest

software, executives,
insurance, inc.,

operating

companies, firm,
firms, businesses,

industry

president
vice, w., george,
yeltsin, clinton

vice, w., george,
clinton, elected

vice, met,
administration,

chairman, elected

florida
supreme, coast,

university, beach,
georgia

supreme, miami,
beach, coast,

university

miami, texas, arizona,
california, georgia

small
businesses, amount,

size, bowl, arms
businesses, town,

amount, bowl, arms
large, smaller, huge,

big, size

arrived
delegation, here,
baghdad, scene,

afternoon

delegation, here,
shortly, baghdad,

afternoon

visited, met,
returned, visit, sent

Table 13: Selection table for symmetric window-based embeddings on Gigaword 3.
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j argmaxi〈i · j〉 argmaxi〈j · i〉 argmaxi cos(|i〉, |j〉)

company
executives, earnings,

executive, shares,
corp.

holding, insurance,
software, giant, phone

firm, companies,
firms, unit, businesses

president
clinton, milosevic,

bush, yeltsin, hussein

vice, association,
executive, marketing,

senior

vice, governor,
candidate, lawyer,

chairman

florida
university, voters,
republican, miami,

coast

south, arizona,
georgia, miami,

southern

california, arizona,
texas, jersey, state

small
businesses, arms,

bowl, large, amount
too, very, size,

numbers, pretty
large, smaller, huge,

big, largest

arrived
delegation, soon,
shortly, soldiers,

refugees

delegation, visit,
evening, scene,

afternoon

visited, returned,
came, met, took

Table 14: Selection table for dependency-based embeddings on Gigaword 3.

matrix is not symmetric. We also note that the right asymmetric embeddings perform better
than the left asymmetric embeddings on similarity tasks, which is consistent with the findings
of Lison and Kutuzov (2017). In addition, the positionally asymmetric embeddings perform
worse on analogy tasks (Table 4) compared to their symmetric counterpart.

On the similarity tasks, we find that the dependency-based embeddings perform much better
than the symmetric window-based embeddings trained on the Gigaword 3 corpus, as shown
in Table 2. However, as was the case in Levy and Goldberg (2014a), dependency-based
embeddings perform very poorly on analogical reasoning tasks (Table 5).

Removing covectors (without replacing them by a linear map R) causes an average drop
of 0.04 in the Spearman coefficient across all tasks (see Table 3) (including in the 300-
dimensional case, which we do not report here). The selection table sheds some light on
this, as the highest cosine similarity between word vectors often reflect cooccurrence rather
than similarity. For instance, the words “went” and “awry” have a relatively high cosine
similarity. However, this drop in correlation is not dramatic. There are still word vector
pairs with high cosine similarity that do reflect word similarity. The word “gone” appears
as one of the words having the highest cosine similarity with “went”. This can be explained
by the fact that both the vector for “went” and the vector for “gone” have high cosine
similarity with “awry”. This shared selectivity for the same word also makes the similar
words “went” and “gone” selective for each other. Thus, inner products between vector-only
embeddings (without R) can reflect both cooccurrence and similarity, but provide no explicit
way of distinguishing between the two. We cannot determine whether a pair of vector-only
embeddings having high cosine similarity means that the two words appear often together
or that they have a similar meaning. The use of covectors provides the ability to make this
distinction explicit.

Replacing covectors with a linear map acting on vectors lags behind when the embedding
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dimension is kept at 300. However, increasing the embedding dimension to 600 is able to
achieve an average score which is slightly better than that of symmetric window-based with
covectors. Note that the R case uses nearly the same amount of parameters as the case with
covectors (actually 3002 = 90, 000 more because of the training of R), while the former uses
half as many. The 600-dimensional case allows for an embedder to learn embeddings that
have a “covector” and a “vector” part (though this might not necessarily be the case, we can
view an embedding as a concatenation of a covector and a vector). Then R can mask the
“vector” part of an embedding and reverse the positions of the “covector” and “vector” part,
thus allowing (|i〉R)T |j〉 to emulate a covector-vector inner product. However, this is not
possible in the 300-dimensional case, as the dimension of the subspaces for the “covector”
and “vector” parts would be too low. This preliminary result suggests that the effect of
covectors can successfully be emulated by a linear map (and this is further backed up by the
selection tables).

We observe very small differences (most are within 1% of each other) between the embeddings
in downstream task performance. Performance is slightly weaker for vector-only embeddings,
and we hypothesize that the reason for this is once again the conflation of cooccurrence
with similarity. Overall, the symmetric window-based embeddings perform better (albeit
marginally) than the other variants.

That said, we hypothesize that the covector-vector and vector-covector inner products in
embeddings with asymmetric contexts could prove useful for such downstream tasks. We
plan on exploring this in the future. The modelling of different notions of cooccurrence may
be more suited for these tasks than the modelling of similarity and/or relatedness.

Arguably the most significant analysis of the embedding variants is the selection table. In
spite of its qualitative nature, it provides the most insight into the behaviour of a set of
embeddings.

In the symmetric window-based case (ψij = 〈i · j〉 and φij = PMI(i, j)), we indeed observe
that columns for fixed vector and fixed covector are nearly identical. This is a reflection
of the fact that PMI(i, j) = PMI(j, i), which leads to 〈i · j〉 ≈ 〈j · i〉. Unlike in Levy and
Goldberg (2014), we find that cosine similarity between word vectors can reflect functional
similarity quite well. For instance, the top five selections for “Florida” are all other US
states.

In the positionally asymmetric case with left contexts, we observe how fixing a word vector
results in it having high selectivity for covectors of words that frequently appear to its left.
As an example, the word “company” is selective for “insurance” and “holding”. Meanwhile,
fixing a word covector results in it having high selectivity for vectors of words that frequently
appear to its right. In this case, “company” becomes selective for “earnings” and “profit”.
In the case of right contexts, we see the reverse effect. Hence, these embeddings are capable
of modelling both sides of the positional asymmetry. Furthermore, since we can interchange
covectors and vectors, the left and right embeddings are equivalent in terms of their be-
haviour. We also observe that the cosine similarity column for both of these embeddings is
close to that of the symmetric window-based embeddings. This further explains the close
performance of the three variants on similarity tasks.
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Similarly, dependency-based embeddings successfully model both sides of the dependent-
head asymmetry. Fixing a words vector results in the selection of covectors that represent
plausible dependents for that word. For example, “president” is selective for “vice” and
“executive”. Fixing a words covector results in the selection of plausible heads for that word.
Here, “president” becomes selective for names of actual presidents, like “bush” and “clinton”.
Unlike Levy and Goldberg (2014a), we observe less of an emphasis on the conj (conjunction)
relation in the covector-vector selections. For cosine similarity between word vectors, we see
the same pattern as in Levy and Goldberg, as pairs of words that reflect functional similarity
are ranked higher. We see this with the verb “arrived” being selective for relevant past tense
verbs like “visited” and “returned”. However, we observe this ability to pick out functional
similarity with symmetric context windows as well. This suggests the greater benefit from
training dependency-based embeddings lies in the bilinear parametrization of the plausibility
of a head-dependent relation (and its direction).

Finally, vector-only embeddings with R exhibit selection tables which are very close to em-
beddings with covectors. Vector-only embeddings without R have no notion of covector,
so only the vector-vector inner product and cosine similarity can be evaluated. We do not
observe major differences between the later two columns. Focusing in on the cosine simi-
larity column, we see how the vector-only embeddings conflate similarity and cooccurrence.
The verb “arrived” is indeed selective for similar verbs like “met” and “returned”, but it
is also selective for dissimilar words which it cooccurs with often like “monday” and “sat-
urday”. The following example illustrates how vector-only embeddings are able to capture
both cooccurrence and similarity:

The word vector for “gone” is highly selective for the vectors of “awry” and “went”. The
former reflects cooccurrence while the latter reflects similarity. But how is “gone” very
selective for “went” if they do not cooccur that often? This is because “went” and “awry”
are also very selective for each other (as they cooccur often). Hence, the representations for
“gone”, “went”, and “awry” all end up near each other in terms of cosine distance.

8 Future Work

8.1 Typed Dependency-based Embeddings

As a next step, we will enhance our dependency-based embeddings by integrating relation
types into context. However, instead of adopting the same approach as Levy and Goldberg
(2014a), which involves separate covectors for each (context word, relation) pair, we train
matrices (similar to R in the vector-only case) for each relation type. These matrices are
meant to contextualize a word’s covector with a relation type. For instance we can transform
the covector for “red” with the matrix for “adjectival modifier” (amod). The transformed
covector is now the word “red” searching for its head under the relation amod. We now take
ψijk = 〈i · Rk · j〉 := 〈i|Rk|j〉 + b〈i| + b|j〉 + bk for a triple (i, j, k), where i and j are words,
and k is a relation type.
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There remains the issue of determining which φijk is appropriate to use, which links to how
we sample from the data distribution and the model. A first attempt, which consisted of
sampling k from a unigram distribution of relation types (for each word in the corpus, we
look at the label of the arc to its head) and then sampling words i and j from their unigram
distributions conditional on k, failed. Storing K (where K is the number of relation types)
cooccurrence matrices was impractical.

Our next attempt will be to use a three-variable extension of PMI, which we denote by
PMI*:

PMI*(i, j, k) = ln
pijk
pipjpk

, (16)

where pijk is the probability of words i and j cooccurring with i as the dependent, j as the
head, and k as the type of dependency relation that links them.

We follow the same derivation as in the original Hilbert-MLE and take the balanced sampling
approach. We sample i, j, and k from their respective unigram distributions and obtain the
following loss:

L = E
i∼pi,j∼pj ,k∼pk

[
ePMI*(i,j,k)〈i ·Rk · j〉 − e〈i·Rk·j〉

]
(17)

Taking the partial derivative with respect to our inner product, we have:

∂L
∂〈i ·Rk · j〉

= (pipjpk)
1
τ

[
ePMI*(i,j,k) − e〈i·Rk·j〉

]
(18)

Other potential approaches that will be explored include using Gibbs sampling.

8.2 Application to Selectional Preference

Selectional preference is a natural language phenomenon where given a head and a depen-
dency relation, there are preferences as to which words will plausibly be the dependent. As
of its publication, recent SP-10K dataset (Zhang et al., 2019) is the largest available ground
truth dataset for this task. It consists of 10,000 examples across 5 dependency relations
(3 one-hop relations, and 2 two-hop relations) containing 2500 verbs, nouns and adjectives
selected from the 5000 most common words in the Corpus of Contemporary American En-
glish. The three one-hop relations are dobj (verb-object), nsubj (verb-noun subject), and
amod (noun-adjective). The two-hop relations are dobj amod (verb-adjective modifying ob-
ject) and nsubj amod (verb-adjective modifying noun subject). An average score across at
least 11 annotators per example mapped to the interval [0, 10] is provided as a measure of
the plausibility of each word pair under a given dependency relation. The goal is to learn
a model that ranks the plausibility of pairs that correlates positively with the ground truth
human annotation.
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For example, say we are given the pair (eat, meal) with the dobj relation. We view this as
asking the question “How plausible would it be for the noun ‘meal’ to be the object of the
verb ‘eat’?” Unsurprisingly the ground truth annotator score for this example in the dataset
is 10.0, and thus a model is expected to give the pair a high score. Similarly, say we are given
the pair (lift, heavy) with the dobj amod relation. This asks the question “How plausible
would it be for the adjective ’heavy’ to modify the object of the verb ‘lift’?”. The ground
truth plausibility score for the latter example is 9.17.

We plan on evaluating our dependency-based embeddings (both typed and untyped) on this
task. Leveraging the covector-vector inner product, we expect the embeddings to perform
well in the “one-hop” case. The “two-hop” case will be more challenging as the Hilbert em-
beddings are limited to dyadic covector-vector inner products. Directly computing the inner
product between an adjective and a verb will not work as the adjective is not a dependent
of the verb but rather a dependent of a dependent of the verb.

9 Conclusion

Continuing the work of the authors of Hilbert-MLE, we build on the central notion of bilinear
parametrization (ψij) of PMI (φij). We test the effect that changes in ψij and φij have on
the resulting pre-trained word embeddings. In particular, we find that the use of asymmetric
context windows changes φij in such a way that φij 6= φji, and that this is reflected in the
interactions between covectors and vectors in the resulting embeddings. We see this with
both positionally asymmetric embeddings and dependency-based embeddings. The former
embeddings allow us to score the plausibility of words appearing in a certain order, while the
latter allow us to score the plausibility of a directed dependency relation. Furthermore, we
place emphasis on the importance of training dual representations for each word, as we find
that vector-only embeddings lag behind in our evaluations. The interaction between vector-
only embeddings conflates cooccurrence and similarity, which are two separate notions. The
use of covectors along with vectors allows for distinction between the two. In future work,
we will explore adding relation types to dependency-based embeddings as well as applying
the latter embeddings to a selectional preference task.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Strakova, Marius Pasca, and Aitor Soroa.
A study on similarity and relatedness using distributional and wordnet-based approaches.
pages 19–27, 01 2009. doi: 10.3115/1620754.1620758.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Random walks
on context spaces: Towards an explanation of the mysteries of semantic word embeddings.
CoRR, abs/1502.03520, 2015. URL http://arxiv.org/abs/1502.03520.

Simon Baker, Roi Reichart, and Anna Korhonen. An unsupervised model for instance level
subcategorization acquisition. In Proceedings of the 2014 Conference on Empirical Methods

23

http://arxiv.org/abs/1502.03520


in Natural Language Processing (EMNLP), pages 278–289, Doha, Qatar, October 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1034. URL https:

//www.aclweb.org/anthology/D14-1034.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. English web treebank. Linguistic
Data Consortium, Philadelphia, PA, 2012.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. Distributional semantics
in technicolor. In Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 136–145, Jeju Island, Korea, July 2012.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/

P12-1015.

Jose Camacho-Collados, Mohammad Taher Pilehvar, Nigel Collier, and Roberto Navigli.
SemEval-2017 task 2: Multilingual and cross-lingual semantic word similarity. In Proceed-
ings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages
15–26, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2002. URL https://www.aclweb.org/anthology/S17-2002.

Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and
information extraction with a supersense sequence tagger. In Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing, pages 594–602, Syd-
ney, Australia, July 2006. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/W06-1670.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes. Super-
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